Question 1

		D1	
(1)	Faults are detected randomly and independently	DI	
	Uniform (mean) rate of occurrence	B1	2
	$(4) P(X = 0) = -0.15 0.15^{\circ} = 0.8607$	M1 for probability	
(ii)	(A) $P(X=0) = e - \frac{1}{0!} = 0.8607$	calc. M0 for tables unless	
		interpolated	
		A1	
	(B) $P(X \ge 2) = 1 - 0.8607 - e^{-0.15} \frac{0.15^1}{100000000000000000000000000000000000$	M1	4
	= 1 - 0.8607 - 0.1291 = 0.0102	A1	-
(iii)			
	$\lambda = 30 \times 0.15 = 4.5$	B1 for mean (SOI)	
	Using tables: $P(X \le 3) = 0.3423$	M1 attempt to find	
		$P(X \le 3)$	3
		A1	
(iv)	Poisson distribution with $\lambda = 10 \times (0.15 + 0.05) = 2$	B1 for Poisson stated	
	$P(X-5) = e^{-2}\frac{2^5}{2} = 0.0361(3 \text{ sf})$	B1 for $\lambda = 2$	
	1(1-5) = 0 5! $5!$	M1 for calculation or	
	or from tables $= 0.9834 - 0.9473 = 0.0361$	Al FT	4
(v)	Mean no. of items in 200 days = $200 \times 0.2 = 40$	B1 for Normal approx.	
	Using Normal approx. to the Poisson,	(SOI)	
	$X \sim N(40,40)$:	B1 for both parameters	
	$P(X \ge 50) = P\left(Z > \frac{49.5 - 40}{\sqrt{40}}\right)$	B1 for continuity corr.	
	$= P(Z > 1.502) = 1 - \Phi(1.502) = 1 - 0.9334$	M1 for probability	
	= 0.0666 (3 s.f.)	using correct tail A1 cao , (but FT wrong or omitted CC)	5
			18

Question 2

	$X \sim N(42, 3^2)$		
(i)	$P(X > 50.0) - P(Z > \frac{50.0 - 42.0}{2})$		
(A)	1(1 > 50.0) = 1(2 > 3.0)	M1 for standardizing	
	= P(Z > 2.667)	MI for prob. calc.	
	-1 - $\Phi(2.667)$ - 1 - 0.9962		3
	= 0.0038	NR answer given	3
	- 0.0000	The answer given	
	P(not positive) = 0.9962	B1 for use of 0.9962	
(i)		in binomial expression	
(B)	P(At least one is out of 7 is positive)		
	$= 1 - 0.9962^7 = 1 - 0.9737$	M1 for correct method	3
	= 0.0263	A1 CAO	
	If an innocent athlete is tested / times in a year there	El comment on their	
(\mathbf{I})	is a reasonable possibility (1 in 40 chance) of testing	probability in (1) B	
(C)	athlates may come under suspicion and suffer a	F1 for sensible	
	suspension so the penalty could be regarded as unfair	contextual conclusion	2
	Or this is a necessary evil in the fight against	consistent with first	4
	performance enhancing drugs in sport.	comment	
		B1 for B(,) or	
(ii)	D(1000_0_0020)	Binomial	
(A)	B(1000, 0.0038)	B1 <i>dep</i> for both	2
		parameters	
(ii)	A suitable approximating distribution is Poisson(3.8)	B1 for Poisson soi	
(B)	P(at least 10 positive tests)	B1FT <i>dep</i> for $\lambda = 3.8$	
	$= P(X \ge 10) = 1 - P(X \le 9)$	M1 for attempt to use	4
	1 0.0010		-
	= 1 - 0.9942	$1 - P(X \le 9)$	
	- 0.0058	A1 FT	
	NB Do not allow use of Normal approximation		
(iii)	P(not testing positive) = 0.995	B1 for 0.995 seen	
		(or implied by 2.576)	
	From tables $z = \Phi^{-1}(0.995) = 2.576$	B1 for 2.576 (FT their	
		0.995)	
	$\frac{h-48.0}{2} = 2.576$	M1 for equation in h	4
	2.0	and positive z-value	
	$h = 48.0 + 2.576 \times 2.0 = 53.15$	A1 CAO	
		ALCAU	
			18

PMT

Question 3

		1						1					
(i)	Rank x	1	5	4	7	6	8	10	3	9	2	M1 for ranking (allow	
	Rank y	2	4	5	8	9	7	10	6	3	1	an ranks reversed)	
	$\frac{d}{d}$	-1	1	-1	-1	-3	1	0	-3	6	1	M1 for d^2	
	d	1	1	1	1	9	1	0	9	36	1	$A1 CAO \text{ for } \Sigma d^2$	
	r —	1	$6\Sigma d$	2	1	6×6	0					AI CAO IOI Zu	
	$r_s =$	$n = \frac{1}{n}$	$(n^2 -$	-1) -	1 1	0×9	9					M1 for structure of r_s	-
												using their Σd^2	5
	= 0.63	6 (to	3 s.f.	.) [(allow	, 0.64	4 to 2	2 s.f.]				All ft for $ r < 1$	
		Ì		, -				-				NB No ranking scores zero	
												2010	
(ii)													
	H ₀ : no	asso	ciatio	on be	twee	n x a	nd y					B1 for H ₀	
	H ₁ : po	sitive	e asso	ociati	on be	etwee	en x a	and y	,			B1 for H ₁	
	Lookin	g for	posi	tive a	assoc	iatio	n (on	ie-tai	l test):		NB $H_0 H_1 \underline{not}$ ito rho	
	Critical	valu	e at :	5% le	evel i	s 0.5	636					B1 for ± 0.5636	
												(FT their H ₁)	_
	Since 0	.636	> 0.5	5636,	ther	e is s	uffic	eint	evide	ence	to	M1 for comparison	5
	i.e. con	10, clude	e that	ther	e app	ears	to be	e pos	itive			with c.v., provided $ \mathbf{r} < 1$	
	associa	tion l	betwo	een te	empe	ratur	e an	d niti	ous o	oxide	e	A1 for conclusion in	
	level.											words f.t. their r_s and	
(iii)												sensible cv	
(111)	Underl	ying	distri	butic	on m	ust be	e biv	ariate	e nor	mal.		B1 CAO for bivariate	
	If the c	listril	butio	n is t	oivari	iate n	orm	al the	en the	e sca	tter	normal	
	This sc	n wii atter	i nav diagi	e an (ram i	empi s not	ellir	snapo tical	e. and	so a]	РМС	CC	shape	
	test wo	uld n	ot be	vali	d.	r					-	E1 dep for conclusion	3
	(Allow) draw a f	comn irm c	nent i	ndica	ting t on el	hat th liptici	ne sar ity an	nple i	is too	smal lidity	ll to		
(iv)	n=60, F	PMC	C crit	tical	value	e is r	= 0.2	2997	<u>.</u>		/	B1	
	So the a	critic	al res	gion i	is $r >$	0.29	97						2
				51011		,						BI FI their sensible c.v.	
(v)	Any the	ree of	f the	follo	wing	:						E1	
	• Co	rrelat	tion o	loes :	not in	nply	caus	sation	1; ~ 41-			F1	
		ere co relat	ould	be a etwe	unird en te	racto mpei	or (ca cature	ausin e and	g the	ne le	vel):		3
	• the	clair	n co	uld b	e tru	e;			01		/ 7	E1	
	• inc	rease	ed oz	one c	could	caus	se hig	gher	temp	eratu	res.		10
1													19

Question 4

(i)	H _a : no association between method of travel and type	B1 for both	
(1)	of school.	DI IOI UOUI	1
	H_1 : some association between method of travel and		1
	type of school:		
(ii)	Expected frequency = $120/200 \times 70 = 42$	M1 A1	
()	Contribution = $(21 - 42)^2 / 42$	M1 for valid attempt	
	= 10.5	at $(O-E)^2/E$	4
		A1 FT their 42	-
		provided $\Omega = 21$	
		(at least 1 dn)	
(iii)		(at least 1 up)	
(111)	$X^2 = 42.64$		
		B1 for 2 day of f(soon)	
	Refer to χ_2^2	DI IOI 2 deg OI I(seell)	
	Critical value at 5% level = 5.991	D1 CAO for av	
	Result is significant	D1 family affiness (ET	
	Ũ	BI for significant (FI	4
	There appears to be some association between method	their c.v. provided	4
	of travel and year group.	consistent with	
	NB if $H_0 H_1$ reversed, or 'correlation' mentioned, do	their d.o.i.	
	not award first B1or final E1	EI	
(iv)	H ₀ : $\mu = 18.3$; H ₁ : $\mu \neq 18.3$	B1 for both correct	
	Where μ denotes the mean travel time by car for the	B1 for definition of μ	
	whole population.		
	Test statistic $z = \frac{22.4 - 18.3}{4.1}$	M1 (standardizing	
	Test statistic $z = \frac{1}{80/\sqrt{20}} = \frac{1}{1.789}$	sample mean)	
	- 2 292	A1 for test statistic	
	10% level 2 tailed critical value of z is 1 645	B1 for 1.645	
	2.292 > 1.645 so significant	M1 for comparison	
	2.272 > 1.043 so significant.	leading to a	7
	It is reasonable to conclude that the mean travel time	conclusion	
	hy car is different from that by bus	A1 for conclusion in	
	by car is unforcing from that by bus.	words and context	
(v)	The test suggests that students who travel by bus get to		
	school more quickly.		
	This may be due to their journeys being over a shorter		
	distance.		
	It may be due to bus lanes allowing buses to avoid		
	congestion.		
	-		
	It is possible that the test result was incorrect (ie		
	implication of a Type I error).	E1, E1 for any two	2
		valid comments	
	More investigation is needed before any firm		
	conclusion can be reached.		18

Question 4 chi squared calculations

H ₀ : no association between method of travel and type							
H_0 : no association between method of travel and type of school; H_1 : some association between method of travel and ype of school;							
		Type of	Row				
Ob	served	Year 6	Year 11	totals			
	Bus	21	49	70			
Method	Car	65	15	80			
of travel	Cycle/Walk	34	16	50			
Colur	nn totals	120	80	200			
		Type of	f school	Row			
Expected		Year 6	Year 11	totals			
	Bus	42	28	70			
Method	Car	48	32	80			
of travel	Cycle/Walk	30	20	50			
Colur	nn totals	120	80	200			
Chi Squared Contribution		Type of	f school	Row			
		Year 6	Year 11	totals			
	Bus	10.50	15.75	26.25			
Method	Car	6.02	9.03	15.05			
of travel	Cycle/Walk	0.53	0.80	1.33			
Column totals		17.05	25.58	42.64			