Question 1

(i)	Faults are detected randomly and independently Uniform (mean) rate of occurrence	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2
(ii)	(A) $\mathrm{P}(X=0)=\mathrm{e}^{-0.15} \frac{0.15^{0}}{0!}=0.8607$ (B) $\begin{aligned} & \mathrm{P}(X \geq 2)=1-0.8607-\mathrm{e}^{-0.15} \frac{0.15^{1}}{1!} \\ & =1-0.8607-0.1291=0.0102 \end{aligned}$	M1 for probability calc. M0 for tables unless interpolated A1 M1 A1	4
(iii)	$\lambda=30 \times 0.15=4.5$ Using tables: $\mathrm{P}(X \leq 3)=0.3423$	B1 for mean (SOI) M1 attempt to find $\mathrm{P}(X \leq 3)$ A1	3
(iv)	Poisson distribution with $\lambda=10 \times(0.15+0.05)=2$ $\begin{aligned} & \mathrm{P}(X=5)=\mathrm{e}^{-2} \frac{2^{5}}{5!}=0.0361 \text { (3 s.f.) } \\ & \text { or from tables }=0.9834-0.9473=0.0361 \end{aligned}$	B1 for Poisson stated B1 for $\lambda=2$ M1 for calculation or use of tables A1 FT	4
(v)	Mean no. of items in 200 days $=200 \times 0.2=40$ Using Normal approx. to the Poisson, $X \sim \mathrm{~N}(40,40)$: $\begin{aligned} & \mathrm{P}(X \geq 50)=\mathrm{P}\left(Z>\frac{49.5-40}{\sqrt{40}}\right) \\ &=\mathrm{P}(Z>1.502)=1-\Phi(1.502)=1-0.9334 \\ &=0.0666 \text { (3 s.f.) } \end{aligned}$	B1 for Normal approx. (SOI) B1 for both parameters B1 for continuity corr. M1 for probability using correct tail A1 cao, (but FT wrong or omitted CC)	5
			18

Question 2

(i) (A)	$\begin{aligned} & X \sim \mathrm{~N}\left(42,3^{2}\right) \\ & \begin{aligned} \mathrm{P}(X> & 50.0)=\mathrm{P}\left(Z>\frac{50.0-42.0}{3.0}\right) \\ & =\mathrm{P}(Z>2.667) \\ & =1-\Phi(2.667)=1-0.9962 \\ & =0.0038 \end{aligned} \end{aligned}$	M1 for standardizing M1 for prob. calc. with correct tail A1 NB answer given	3
$\begin{aligned} & \text { (i) } \\ & (B) \end{aligned}$	$\begin{aligned} & \mathrm{P}(\text { not positive })=0.9962 \\ & \begin{array}{l} \mathrm{P}(\text { At least one is out of } 7 \text { is positive }) \\ \quad=1-0.9962^{7}=1-0.9737 \\ =0.0263 \end{array} \end{aligned}$	B1 for use of 0.9962 in binomial expression M1 for correct method A1 CAO	3
$\begin{aligned} & \text { (i) } \\ & (C) \end{aligned}$	If an innocent athlete is tested 7 times in a year there is a reasonable possibility (1 in 40 chance) of testing positive. Thus it is likely that a number of innocent athletes may come under suspicion and suffer a suspension so the penalty could be regarded as unfair. Or this is a necessary evil in the fight against performance enhancing drugs in sport.	E1 comment on their probability in (i) B E1 for sensible contextual conclusion consistent with first comment	2
(ii) (A)	B(1000, 0.0038)	B1 for B(,) or Binomial B1 dep for both parameters	2
(ii) (B)	A suitable approximating distribution is Poisson(3.8) P (at least 10 positive tests) $\begin{aligned} & =\mathrm{P}(X \geq 10)=1-\mathrm{P}(X \leq 9) \\ & =1-0.9942 \\ & =0.0058 \end{aligned}$ NB Do not allow use of Normal approximation.	B1 for Poisson soi B1FT dep for $\lambda=3.8$ M1 for attempt to use $1-\mathrm{P}(X \leq 9)$ A1 FT	4
(iii)	$\mathrm{P}(\text { not testing positive })=0.995$ From tables $\mathrm{z}=\Phi^{-1}(0.995)=2.576$ $\begin{aligned} & \frac{h-48.0}{2.0}=2.576 \\ & h=48.0+2.576 \times 2.0=53.15 \end{aligned}$	B1 for 0.995 seen (or implied by 2.576) B1 for 2.576 (FT their 0.995) M1 for equation in h and positive z-value A1 CAO	4
			18

Question 3

Question 4

(i)	H_{0} : no association between method of travel and type of school; H_{1} : some association between method of travel and type of school;..	B1 for both	1
(ii)	$\begin{aligned} & \text { Expected frequency }=120 / 200 \times 70=42 \\ & \text { Contribution }=(21-42)^{2} / 42 \\ & = \\ & =10.5 \end{aligned}$	M1 A1 M1 for valid attempt at ($O-E)^{2} / \mathrm{E}$ A1 FT their 42 provided $\mathrm{O}=21$ (at least 1 dp)	4
(iii)	$X^{2}=42.64$ Refer to $\mathcal{X}_{2}{ }^{2}$ Critical value at 5% level $=5.991$ Result is significant There appears to be some association between method of travel and year group. NB if $\mathrm{H}_{0} \mathrm{H}_{1}$ reversed, or 'correlation' mentioned, do not award first B1or final E1	B1 for 2 deg of f (seen) B1 CAO for cv B1 for significant (FT their c.v. provided consistent with their d.o.f. E1	4
(iv)	$\mathrm{H}_{0}: \mu=18.3 ; \quad \mathrm{H}_{1}: \mu \neq 18.3$ Where μ denotes the mean travel time by car for the whole population. Test statistic $z=\frac{22.4-18.3}{8.0 / \sqrt{20}}=\frac{4.1}{1.789}$ $=2.292$ 10% level 2 tailed critical value of z is 1.645 $2.292>1.645$ so significant. There is evidence to reject H_{0} It is reasonable to conclude that the mean travel time by car is different from that by bus.	B1 for both correct B1 for definition of μ M1 (standardizing sample mean) A1 for test statistic B1 for 1.645 M1 for comparison leading to a conclusion A1 for conclusion in words and context	7
(v)	The test suggests that students who travel by bus get to school more quickly. This may be due to their journeys being over a shorter distance. It may be due to bus lanes allowing buses to avoid congestion. It is possible that the test result was incorrect (ie implication of a Type I error). More investigation is needed before any firm conclusion can be reached.	E1, E1 for any two valid comments	2 18

Question 4 chi squared calculations

H_{0} : no association between method of travel and type of school; H_{1} : some association between method of travel and type of school;				
Observed		Type of school		Row
		Year 6	Year 11	totals
Method of travel	Bus	21	49	70
	Car	65	15	80
	Cycle/Walk	34	16	50
Column totals		120	80	200
Expected		Type of	f school	Row
		Year 6	Year 11	totals
Method of travel	Bus	42	28	70
	Car	48	32	80
	Cycle/Walk	30	20	50
Column totals		120	80	200
Chi Squared Contribution		Type of school		Row
		Year 6	Year 11	totals
Method of travel	Bus	10.50	15.75	26.25
	Car	6.02	9.03	15.05
	Cycle/Walk	0.53	0.80	1.33
Column totals		17.05	25.58	42.64

